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Abstract

This thesis develops a method to model the acoustic field generated by a

monopole source placed in a moving rectangular duct. The walls of the duct are assumed

to be infinitesimally thin and the source is placed at the center of the duct. The total

acoustic pressure is written in terms of the free-space pressure, or incident pressure, and

the scattered pressure. The scattered pressure is the augmentation to the incident pressure

due to the presence of the duct.

discontinuous across the duct walls.

It satisfies a homogeneous wave equation and is

Utilizing an integral representation of the scattered

pressure, a set of singular boundary integral equations goveming the unknown jump in

scattered pressure is derived. This equation is solved by the method of collocation after

representing the jump in pressure as a double series of shape functions. The solution

obtained is then substituted back into the integral representation to determine the

scattered pressure, and the total acoustic pressure at any point in the field. A few

examples are included to illustrate the influence of various geometric and kinematic

parameters on the radiated sound field.
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I. Introduction

The understanding and accurate prediction of sound radiation associated with

aircraft applications is of current interest. Recently, a great deal of attention has been

directed to modeling the ultrahigh by-pass ratio turbo-fan engine (ducted propfan) due to

its efficiency and shrouded propeller design. This engine has become attractive as an

efficient component of future commercial transport aircraft. It is known that an

unshrouded propeller generates an acoustic field which tends to radiate in the lateral

direction. By housing the propeller in a shroud or duct (as in the ducted propfan),

potential benefits of noise reduction exist since the duct provides a shield in the primary

radiation direction. The ability to accurately model this propeller noise in both the ducted

and unducted cases is of great importance. Modeling techniques such as computational

fluid dynamics (CFD), finite element methods (FEM) and boundary integral techniques

have been utilized to predict the acoustic benefits of the ducted propfan. Eversman [1]

developed a finite element model for the generation, propagation and radiation of noise of

a ducted fan. He also constructed a free-field propeller model compatible with the finite

element formulation and conducted noise studies as presented in ref. [1]. Radiated field

results for both the ducted and unducted propeller were obtained. Lan [2] and Buhler [3]

developed separate prediction methods based on a boundary integral technique for the

acoustic field generated by a propeller within a circular, rigid duct.

The presence of a duct or shroud was shown in all above studies to reduce the

level of noise radiated from a propeller, at least in the primary radiation direction. With

the presence of the shroud, an acoustically treated duct wall can also be utilized to further



increase the level of noise reduction obtained. The work of Kosanchick [4] was an

extension of the work presented in refs. [2,3] and included an acoustically treated duct

wall. Dunn, Tweed and Farassat [5] also presented a similar model of the acoustic field

generated by a ducted propfan. Their boundary integral equation technique modeled

acoustically treated walls, but only rigid wall results were presented in ref. [5]. The

models in refs. [2-5] required fewer overall computations than the finite element

technique since the boundary integral method only requires dealing with a surface

integration along the duct as compared to finite element computations over the entire

region of interest. However, the boundary integral technique cannot be applied if

complex geometrical models or complex mean flows are involved.

As it is of great importance to develop accurate prediction methods of sound

radiation from a ducted propeller, it is also of importance to understand the relationship

between the duct geometry and source type in regard to noise reduction. The analysis in

refs. [2-4] was modified and applied to a point source rather than a propeller model by

Myers [6]. With a simpler source model, comparisons could be made between the

boundary integral technique and the CFD approach. 0zy/Srilk and Long [7] utilized a

finite-difference approach in solving this particular problem, and their results were found

to be in agreement with those of ref. [6].

The studies previously discussed in refs. [1-6] dealt with only an axisymmetric

duct configuration. However, rectangular duct configurations are often utilized for

experimental inlet research. Thus, it is the purpose of the current work to develop a

boundary integral technique similar to those in refs. [2-6] to describe radiation from a



monopoleor point sourceplacedwithin a rectangularduct. Thisparticularductgeometry

lackssymmetryandrequiressignificantlygreatercomputationaleffort thanthe problems

previouslydiscussedin refs.[2-4,6]. Thesourcewasrestrictedto bea monopolesothat

at leastthe incidentfield wouldbesymmetricin form. The duct walls are assumed to be

rigid and infinitesimally thin. The current work utilizes a scattering formulation which

decouples the effects of the duct and source [2-6]. The scattered pressure is

discontinuous across the walls of the duct. It is governed by a generalized wave equation

with a source term that is proportional to its unknown jump across the duct walls. An

integral representation for the solution of this in terms of this jump in scattered pressure

across the duct surface is obtained. The scattered pressure jumps are then represented by

two carefully chosen shape function expansions. The free-space pressure is used as the

input data and the method of collocation is utilized to solve a system of algebraic

equations for the coefficients of the shape function expansions. From these coefficients,

the jump in scattered pressure along the duct surface is obtained and substituted into the

original integral representation to obtain the scattered pressure. The total acoustic

pressure is obtained through the sum of the free-space or incident pressure and the

scattered pressure for a particular field point.

The remainder of this thesis discusses the formulation and validation of the

boundary integral technique in its application to the rectangular duct with a monopole

source at its center. In particular, Chapter 2 details the development of the governing

boundary integral equation. Chapter 3 presents the numerical details necessary to

accurately obtain the solution to the set of algebraic equations. The impact of the choice



of parameters on the solution is shown through a few example problems as discussed in

Chapter 4.



2. Theory

This chapter presents the development of the governing equations required for the

prediction of the acoustic field radiated from a source in a moving rectangular duct.

2.1 Integral Representation

An acoustic source in an infinitesimally thin, rigid, rectangular duct is examined.

The rectangle is of length L, width 2b and height 2a as shown in Figure 1. A body-fixed

cartesian coordinate system X, placed at the center of the moving duct, and an inertially-

fixed cartesian coordinate system "2, are used to describe the duct. The duct is assumed

to be moving subsonically at velocity V, in the negative x3 direction of the inertially-fixed

frame. The objective is to obtain the acoustic field radiated to free space through the

open ends of the duct.

By linearizing the ideal fluid equations of motion it can be shown that acoustic

wave propagation in isentropic flow with no body forces is governed by the wave

equation which can be written in the form

1 c32pt (2.1)
D2p, _ c2 o_t2 -- V2p, = q(R,t)

where p, is the total acoustic pressure, q("2,t)is the noise source, and c is the speed of

sound in the fluid medium.

The total acoustic pressure is written in terms of incident and scattered acoustic

pressure components as

P, = Pi + Ps (2.2)



where p, is the free-space pressure due to the monopole source alone and Ps is the

augmentation of the incident pressure due to the presence of the rectangular duct.

Through the use of this scattering formulation, the effects of the duct and noise source are

decoupled and can be handled separately. The incident field satisfies

r12pi = q(_,t) (2.3)

It then follows that the scattered field must satisfy the homogeneous wave equation

I-Fp, = 0 (2.4)

The objective is to obtain an integral representation for the scattered field along with the

appropriate boundary conditions at the duct surface and a radiation condition specifying

that the scattered field is outgoing in the region exterior to the duct.

Let f(_)=0 describe the surface of the thin, rigid duct moving in a direction

tangent to itself where f is defined such that Vf = fi and fi is the unit outward normal to

the duct surface. The presence of the solid duct walls gives rise to a discontinuity in

scattered pressure across the duct surface. Through the use of generalized derivatives and

eqn.(2.4), it can be shown that the scattered pressure is a solution to the generalized wave

equation

_2 p, = _. [A p, fiB(f)] (2.5)

where a(°) is the Dirac delta function and Ap s is the jump in scattered pressure across the

duct surface [8]. The bars over the differential operators in eqn. (2.5) signify generalized

differentiation. Equation (2.5) is a special form of the well-known Ffowcs Williams-

Hawkings (FW-H) equation [8,9].



By solving eqn.(2.5)utilizing the free-spaceGreen's function

equation,an integralrepresentationfor p_isobtainedin theform

4np,(R,t)=-c_9--_-jkrll_M, j.dS- L Si-_- lj.ds
f=0 f=0

for the wave

(2.6)

The details of the derivation of eqn. (2.6) are given in number of earlier publications [8]

and therefore will not be repeated here. In eqn. (2.6), r = I_1= Ix - 5'1 is the magnitude of the

radiation vector representing the distance from a source point at ._ on f=0 to an observer

at _; M, is the component of the surface Mach number in the direction of the radiation

vector; 0 is the angle between _ and the unit normal to the surface of the duct fi at the

source location; dS is the elemental area of the duct surface f=-0. The integrands are

evaluated at the emission time T* which is a solution to the retarded time equation

r
t - x - - = 0 (2.7)

C

There is only one solution _* for the retarded time equation since the duct is assumed to

be moving subsonically through the fluid medium. Physically, r* is the emission time of

signals generated by a source on the duct surface that are received by an observer at

position _ at time t.

By applying the appropriate boundary conditions to eqn. (2.6), an integral

equation will be developed from which the unknown jump in scattered pressure A ps is

determined over the surface of the duct. Once A ps is known, the scattered acoustic field

for any position and time (_,t) can be determined using eqn. (2.6) again.



The following detailsof the analysisaresimplified if eqn. (2.6) is expressedin

termsof thebody-fixedcoordinatesystem.To relate the observer and source positions in

the body-fixed reference frame to the observer and source positions in the inertially-fixed

reference frame, the following transformation is utilized:

= Y,+ Vti3 (2.8)

Here _'_ is the unit vector in the 3-direction.

The analytical development of the boundary integral equation to follow can be

carried out for an arbitrary incident pressure field p_. However, computational

complexities make it desirable to introduce some symmetry into the problem. Thus, at

this stage it is assumed that the acoustic source is a monopole and, for further simplicity,

it is positioned at the origin of the body-fixed coordinate system (i.e., at the center of the

duct). Among other things, this restriction ensures that the scattered pressure jumps are

identical on surfaces x2 = +b and x, = _a. The incident field corresponding to a moving

monopole source is reviewed in the next section.

2.2 Incident Monopole Field

duct.

complex velocity potential that satisfies

1 a2dpi

1"12_i- C2 _t 2 1_72{_i = me-i_tS(x3 + Vt)_(x2)_(x1)

The incident field is the field due to the source alone without the presence of the

The solution to eqn. (2.3) can be obtained for the monopole source in terms of a

(2.9)



where A is defined as the source strength. The solution to eqn. (2.9) is well known and

appears, for example, in Morse and Ingard [10]. In terms of the body-fixed coordinates

the solution presented in [10] is

-Ae . -MX3 (2.10)
,(.X,t)- _ exp Is +

where the symbol a, which is used throughout this work, is defined by ot = o/cl3, and

132 = 1 - M2 . Use of the relation

Pi = =

yields the incident monopole complex pressure field in the form

f i_ + _ MX_

• + 'e t n +_oo)
Pi 4n [3: Bo

(2.11)

(2.12)

where Bo =---=+ X,2+X_ and Po is the fluid density. As noted above, the monopole

complex pressure field expressed in eqn. (2.12) will be the only incident field considered

here. As with all quantities in the following, the physical pressure is taken to be the real

part of the complex incident pressure.

2.3 Boundary Integral Formulation

The analysis involved in formulating the boundary integral equation requires

lengthy algebraic manipulations of eqn. (2.6) that are simplified if it is written in terms of

the body-fixed coordinates. For convenience define _, 11and _ as



_ Y3- X_, _ =Y2- X2, _ = YI- Xt

These abbreviations are utilized frequently throughout this work.

which extends from the duct surface f=O to an observer at R, is

(2.13)

The radiation vector,

r = x - y = X - Y - V(t - *)i'3 (2.14)

Substitution of eqn. (2.14) into the retarded time equation eqn.(2.7), leads to a quadratic

equation for the radiation distance at time z', whose solution is

r'= = c(t- x') (2.15)

The component of the surface Mach number in the direction of the radiation vector is

M =M_ .__=-[ M_13+M2r]
r r

(2.16)

where r is the magnitude of the radiation vector. Evaluation of eqn. (2.16) at the emission

time x" and use ofeqn. (2.15) yields

I,_ Mr I
r °

(2.17)

The factor cos0 is given by

Finally, the scattered pressure jump

incident field as

fi._
cosO = -- (2.18)

r

A Ps can be modeled in the form suggested by the

where

gives

-imMX3

Ap_(_,t) = n(_)e-i_'e _ (2.19)

_ represents surface coordinates. Evaluation of eqn. (2.19) at the emission time

10



i_or" -i_MY _

c e 13 (2.20)

Substitution of eqns. (2.17), (2.18) and (2.20) into the two surface integrals representing

the scattered pressure in eqn. (2.6), then puts the integral representation of Ps in the form

ff itar" -io, My_ f / _ _ ^ it_r" -ia.MY_

n_YJn, f e-'_' e-g- e--4np,(_,t)=_l _0 _(f/,)fi.fe-_tec e 13 dS ...... dS

cot r'4_2+ rlZ+q2 J (r.):4_2 + r12+q2
f=0 f=0

(2.21)

The time derivative of the first term in eqn. (2.21) is calculated at fixed _,. It can

be obtained using the material derivative operator of eqn. (2.11). After algebraic

manipulations, eqn. (2.21) can be rewritten as a single surface integral in the form

4nl3p,(X,t)=e-i_'e_ - n (Y,)n._ _2+_-i+q2 (_2+r12+g2)3,2 expict_/_2+rl2+q z dS

f=O

(2.22)

Equation (2.22) is the integral representation of the scattered pressure written in terms of

body-fixed coordinates. At this stage, eqn. (2.22) applies for an arbitrary duct cross-

section.

In the next phase of the analysis, the incident field is utilized in conjunction with

eqn. (2.22) to form the boundary integral equation. To accomplish this goal, a boundary

condition is introduced for a duct with rigid walls.

applied, namely fit "fi = 0 on the duct surface f=0.

The no penetration condition is

Substituting the no penetration

boundary condition into the linearized momentum equation yields

/_fit' fi) c3p,
p ..... 0 (2.23)

on

Then use of eqn. (2.2) implies that the boundary condition on the scattered pressure is

(2.24)

il



on the duct surface. Therefore, after taking the normal derivative of eqn. (2.22) and

utilizing eqn. (2.24), it follows that

(2.25)

in the limit as the observer at ,X approaches the duct surface f=0. Equation (2.25) is the

boundary integral equation whose solution for the unknown jump amplitude n is the

object of the remainder of this work.

The integral equation (2.25) is now specialized for the rectangular duct by noting

that, due to the symmetry of the walls and the positioning of the acoustic source, the

jumps in scattered pressure are identical for x, = _a, i.e., the top and bottom surfaces, (see

Figure 1) and similarly for x2 = +_b, i.e., the two side surfaces. Thus, the jump amplitude

n is defined separately for each independent surface as

_ (_.,t)=In.(X3,X2)on X,=+a l (2.26)

_nz(X3,X.) on X2=:t:bJ

Further, the amplitudes 7t_ and 71;2 are represented as expansions in terms of shape

functions to model the expected oscillatory behavior present on the surface of the duct.

Thus x I and x2 are written as

J-I KI-I

n,(Y3,Y2) = X Zaj,kqOj(Y3)_k(Yz)
j:o k=o (2.27)

J-t K2+KI-I

nz(Y3,Y,)= Z X a,,kq)i(YJ)Vk(Y,)
j=0 k=Kl

where K_, K2 and J are the number of functions included to describe n on the surfaces

X, = +a and X2 = _b and along the length of the duct, respectively. The unknown

coefficients aj,k in eqn. (2.27) are to be determined. The specific forms chosen for the

12



shape functions (pj and g/k will be explored in detail in Chapter 3 of this thesis. The

integral equation for the rigid, rectangular duct then appears in terms of contributions

from each of its four sides in the form

where

J-I KI+K2-1 r _]

- 4n13 OPi(X't) -e-'(_'÷-_]On _[i=o0_'_ K,-,k=oYa,k/I_II."+ II_] + j=o_ k_K,ajk[I_'= + l_4k_]I. (2.28)

L/2 b

I11l= -!t2 % (Y3) -_b_k (Y2)(X,- a)F(5, rl. X,- a) dY2 dYj

II_-- Li2 %(V3)i_'k (Yi)(X2- b)F(_,X2- b,_)dYidV3
-LI2 -a

L/2 b

•<', s <,,( )s ( )( )|l,k -_ -- Y3 I_/k Y] Xl -tt- a , '1_, X I -_- a dY2 dY3
-LI2 -b

(2.29)

and where the function F is defined by

+

In solving eqn. (2.28) later it will be required that the integral equation be

evaluated for observers on the top surface X_=a and on the side surface X2=b. The

analysis here will be presented only for an observer positioned on the top surface, and it

will be assumed that X2 is on the interval -b<X2<b so that the observer is never precisely

at the comer of the duct. The same type of analysis can also be utilized when an observer

is positioned on the side surface of the rectangular duct. It is unnecessary to repeat the

derivation however, because the result follows by analogy with that for the observer on

the top surface by simply interchanging XI and X2, Y_ and Y2, _ and rl, and a and b.
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The normal (or X0 derivatives indicated in eqn. (2.28) are now calculated to put

the integral equation in its desired final form. The left-hand side of eqn. (2.28) follows

from eqn. (2.12) evaluated on X_=a as

0Pi (f(,t)
_ p_l)" " -iaMX,(X3)e e-imt (2.31)

0Xj

where

{ /-Mx'4tlp!,)(Xs)_PocA X, ela,_, l-ict_o)+ictBo l-iot "---_+ (2.32)4 P2(ao)''2 --×,=a

and B o is as previously defined. The integrand in the term I_Id of eqn. (2.28) is singular

when the observer and source points coincide (i.e., X3=Y3, X2=Y2, Xl=Yl=a), but the

other three terms in eqn. (2.28) are non-singular as long as X2 ¢ b. Since the integrals in

eqn. (2.28) are to be evaluated numerically, the singularity in the first integral must be

removed and treated analytically. Thus, the normal derivative of I_I_ will only be written

symbolically at this time. On the other hand, the normal derivative of the three non-

singular terms can be calculated directly for X_=a. The manipulations required are purely

algebraic and, after dividing out the common exponential factor, the boundary integral

equation becomes

where

- 4_x13pp) = K 0) + K (2) + K ¢3)+ K (4)

KI-I J-I Ol_II l
0 J.zl KI-I

K {1) = lim _-_l j__L050aj,kl_l_ : Z Z aj,k_ limx.-,, j=0 k=0 Lx,-,, ox, J

(2.33)

(2.34)
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a J_l KI+K2-1 ,(2) _ _J_l KI+K2-1 LI2 aK(2)= lim--X _ aj, k 3_ aj.k f %(Ys)[W,(YtXY.-aXX2-b)G(_,b-Xz,Y.-a)dY. dY3
XI _lt aXl j=o k=KI Ij,k -- j=0 k=KI -L/2 -I

"" ) )]3 a J-i J-| KI-I L/2 b

K _)= lim--Z __aj,l_!d=-_ _-ai,kf _°_(Y3)fWk(Y2 ,q,2a +4a2G .rl,2a dY2dY3
Xv -_l _Xl j=o = ' ' j=o k=O L/2 -b

L/2 a

K _''= lim--a ,-'_ K|÷K2-tZa,,, II_L) = ,-|_ K,._2-.Za,.k L!2tp,(Y3)! W,(Y XYt-aXX2 + b)G(_:.,b+ X2,Y|- a) dYldY'
Xl ''l'a _Xl j=0 k=KI j=0 k=KI

and where the function G is defined by

(2.35)

= -- 5/2

3ia + (iaf le_

J
(2.36)

In the following section, the singular term given in eqn. (2.34) will be treated

analytically. The other three terms involve only non-singular integrals, and these will be

evaluated numerically in the form in which they are presented in eqn. (2.35).

2.4 Singularity Analysis

The singular integral term that appears in eqn. (2.34) contains the integral defined

in eqn. (2.29). If the symbol h is introduced, where h=X:a, it can be written as

• a[_l _ a r L/2 b

_lmo--_-= lim--_-, _h j tP_(Y3)_k(Y2)F(_,q,h)dY2dY3
h_(1171"1 [ -L/2 -b J

Define Ik(Y3,h) to be the transverse, inner integral in eqn. (2.37) so that

(2.37)

b

Ik(Y,, h)= IWk (Y2)F(_, rhh)dY_ (2.38)
-b

This single integral is considered first; it is singular when _, rl and h vanish, which occurs

when the observer point coincides with the source point on Xt=a. By expanding the

integrand for small values of _, rl and h, the following expression is obtained

.( - I (ia)'"} A=q' _,.,

Wr,F = (Ao + A, -q}k_-B-_Tf+ -_-_-j - _ + Ul, l'

in which B = _2 + rl: + h 2, and

(2.39)
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v"_(x_)Ao='_(X_),A,=V'_(X_),A_-

The singular terms shown explicitly in eqn. (2.39) are denoted as (wkF)o, and eqn. (2.38)

is written as

The first integral in eqn. (2.40) is completely non-singular as _, 11 and h approach

evaluatedzero. The second involves only elementary integrations which can be

analytically by changing the integration variable to rI=Y2-X2. This results in

b [(i_t)2 (/_2+r12+h2) + A, + (_A,_/_2 + rl2 + h2 +

A2f _- Iog(_+_)D Ao4 ,]_' (2.41,_,k_+_+_ (_+._),/_+_+.,.

Here the 1"1limits are defined by rl.=-b-X2 and/q+=b-X2; therefore, neither limit vanishes if

-b<X2<b and only the last term on the right hand side of eqn. (2.41) is singular as _ and h

(2.40), including the result of eqn. (2.41), is now

At this stage of the analysis, each of the non-singular

go to zero.

The expression in eqn.

substituted back into eqn. (2.37).

integrals that appear can be differentiated with respect to h and the limit as h goes to zero

can be calculated directly. This yields

_-_-: !,2%(Y,_,r-(_kF)o._odv2dv,

.... "'v_ +n _+a_ log(n + _]_"_ _ dY3
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 IL2r I t-Aolim--_h .f %(Y3)| _ (2.42)

,_o0h [-L,2 [(_2+ h2)_/¢2+ _, + h/ dw

The first two terms on the right in eqn. (2.42) can be evaluated numerically without

difficulty, and will not be discussed further. The entire singular behavior of the boundary

integral equation (2.33) has now been isolated in the third term, and this is the subject of

the remainder of this section.

To further analyze the singular term in eqn. (2.42), define the function Fo as

Since neither rl. nor 13. vanish, the function Fo is non-singular when _=h=O.

term on the right side ofeqn. (2.42) is rewritten as

where

(2.43)

The third

0
Q, = -Ao lim-_- { hl.} (2.44)

L/Z q_j(V_) F,,(_,h) (2,45)I,= _ dYj
-LJ2 _2 + h:

Given F o as defined in eqn. (2.43), define a sequence of functions Fm according to

Fm(_,h) = Fm(0, h)+_ F,_+,(_,h)

for m=0,1,2,.... After use of eqn. (2.46) with m=0, Is can be expressed as

L'2 ._ L/2 _V,(¢,h_j(Y3)Is = dY3 + _ dY3Fo.0,h.+ ¢

(2.46)

(2.47)

Because the second term of eqn. (2.47) is still singular when h=0, eqn. (2.46) is applied

again with m=l which yields
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L,2co,{y3_ Ln_m{y3_ Ln _2F_(_,h)_pj(Y3)

h=Fo(O,h) I _dY,+F,(O,h) j _dY,+ i _2 dY, (2.48)-L/2 _ + h -L/2 _ + h" -L/2 + h:

The third integral in eqn. (2.48) is now non-singular at h=0.

From eqn. (2.46) it follows that

,, [Fo(_,h)- Fo(O,h)] OFo(O,h)

F,(0,h) = _m L ( -j = _ = 0 (2.49)

In addition, making use of the fact that 13_=Y3-X3, it is seen that the first integral in eqn.

(2.48) can be rewritten as

e _2 . , _,(_
L,2 _oj(Y3)dy, 13 - 1%tY+J tan [hJdY3 (2.50)

!/5 _2 + h2 h aX3-t./2

It then follows that

c_ lim c3 I - 13F0(O h) c3 t_2 (p+(Y,)tan-'(_/dY,+ h L;+ _2F2(_,,h)(pj(y+) dY _
_i_In0"_(h|') = h---_0 Oh t ' aX3 -L/2 ) _,hJ _LJ/2 _-22"-_ 3f (2.51)

The limits in eqn. (2.51) can now be evaluated. The first term on the right is

lim+-B +F°(0'h) c_ _2q:>j(Y,)tan-l(-_IdY,+-lJFo[,'Oh" + L]'2_cpj(Y3))-J _dY,_" _
h+O( - _ ax+_,]2 ax+_L,2+ +h J

• [_0Fo(0h)_L,_2 q_j(Y,) _ . . ¢3 L/.2 _¢Pj(Y3) ]
=lim'ilJ_la J _2--/--?-_dY3+lJFo(0 h) .--d:-- j _2---y-y-?T,2 dY3_ (2.52)

h-+0[ an -L/2q +h ' 3X+-L]2 _ +h J

after differentiation. The first term on the right hand side of eqn. (2.52) can yield a non-

zero limit only because of contributions of the integral at the singular point _=0. The

limit is therefore obtained by reducing the integration range to small local interval -_5<_<5

so that it becomes

3Fo(O h) + 1 OFo(O,h) , _, +
limlh_%(Y,)_ .-T--_._dY,I= limI_%(X,)tan-(_I l =O (2.53)

h-_O[ on " -sq +h" J h+0[ an + _n-,__j
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because OFo/Oh vanishes at h=0. The second term on

expressible in terms of a Cauchy principal value integral as

the right of eqn. (2.52) is

a
I__ =2s3T£;_L,__--- dY_

after using the fact that Fo(0,0)=2.

Now, consider the second term on the right side ofeqn. (2.51). It is

lim-w-'_h ] dY31 =,-_oon [ __,_ _ + h_

u2 [ L/2 _2 [aF2(_,,h)
F2 (_,0) q_j (Yj) dY3 + lim {h _

__,_ _-.ot__,,e--_k _2 + h2

(2.54)

(2.55)

It is easily shown, by the same procedure that led to eqn. (2.53), that the local

contribution of the second term in eqn. (2.55) also vanishes.

Finally, because

F2 (_,0) : Fo (_,0)- Fo(0,0)-_ F, (0,0) Fo (_,,0)- Fo(0,0)
_2 - _2 (2.56)

it follows from eqn. (2.55) and (2.56) that eqn. (2.44) is

Q_= -Ao_imo_(hls ) = -Ao{2D-- ...J" _""7_dY3+ J -'7_-'_1 -_wl }'dY3} (2.57)

where 11+and r I. are as previously defined. The shape functions % will be defined in the

following chapter of this thesis and it will be shown there that an analytical expression for

the Cauchy principal value integral can be obtained. It should be emphasized here that

the second integral in eqn. (2.57) is non-singular and can be evaluated numerically

without any difficulty.
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2.5 Summary

At this point it is appropriate to summarize the lengthy analysis just presented.

Equation (2.33) is the singular integral equation to be solved for the unknowns aj.k. To

solve this equation numerically requires the evaluation of the integrands that appear as

coefficients of the unknowns in eqns. (2.34) and (2.35). However, the singular integral of

eqn. (2.34) cannot be evaluated directly. The preceding section has outlined the method

by which the singularity has been removed from the integral. Its complete analytical

evaluation will be carried out in the following chapter. The numerical task remaining

involves only the straightforward evaluation of the double integrals in eqn. (2.35), the

double integral in the first term on the right in eqn. (2.42), the single integral in the

second term on the right in eqn. (2.42) and the single integral in the second term on the

right in eqn. (2.57). Again, all of these integrals are non-singular and can be evaluated

numerically without difficulty. As mentioned previously, all of these expressions can be

converted to apply to an observer on the side surface by the appropriate interchange of

variables.

The next chapter outlines the numerical procedure followed to obtain the

unknowns aj.k which determine the unknown scattered pressure jump across the duct

walls. Once known they are utilized to calculate the scattered pressure at an arbitrary

in the field from

.( _MX,_

e-'L"+--¢--)I _, ,,-, ,-, ,,+,2-, ]}p,(X,t)- 4,[3 L'`° _a,,[I_'_=, , + l_:I] + ,=oX k_ a,k[I_!k)=, , + I_:k) (2.58)
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wherethe I]i)kare the integralsdefined in eqn. (2.29); all of these integralsare non-

singularso long as X is not on the duct surface. Thetotal acousticpressureradiated

from the duct is obtainedby addition of the known incidentpressureto the calculated

scatteredpressure.
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3. Numerical Implementation

The previous chapters detailed the development of the set of equations which,

when solved, predict the acoustic field generated by a monopole source placed at the

center of a rectangular duct. The equations have been analytically treated to eliminate

problems in implementing numerical schemes. The governing equations for this problem

have been coded into a FORTRAN code and run on a 500MHz DEC-Alpha workstation.

Before addressing the issues in this chapter it is pointed out that the axial

integration in eqn. (2.33) is similar to that done by Kosanchick [4] in applying a boundary

integral technique to predict the acoustic field generated by propellers in lined as well as

rigid circular ducts. A shape function expansion was also posed there for the axial

behavior of the scattered pressure jump along the surface of the duct. However, the form

of the expansion proved to require adaptive techniques at the leading and trailing edges of

the duct due to sensitivity to the choice of parameters. The code developed for the rigid

circular cylinder was later modified to replace the propeller noise source model with a

point monopole. Results describing radiation from the monopole acoustic source were

discussed by Myers [6]. Prior to the current consideration of the rectangular duct, a new

set of shape functions were introduced to describe scattered pressure jump along the

surface of the circular duct. Through extensive numerical testing, it was found that this

new set of shape functions eliminated the need for additional adaptive techniques at the

leading and trailing edges of the duct. The current analysis for the rectangular duct

makes use of this new set of axial shape functions and they are discussed in the following

section of thi_ chapter.
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3.1 Pressure Jump Representation

The scattered pressure jumps are represented as a series of products of two

sequences of carefully chosen shape functions as presented in eqn.(2.27). The shape

function expansions are chosen to model the oscillatory behavior expected on the duct

surface as well as the appropriate behavior of the pressure jump at the leading and trailing

edges of the duct. With these criteria in mind, the shape function expansion for the axial

direction is discussed first.

It is known that integral equations like the one under consideration here do not

have unique solutions until further conditions associated with the edge behavior of the

solution are specified. As in thin airfoil theory, the pressure jump that satisfies eqn.

(2.33) can be expected to have an inverse square-root singularity at the leading edge of

the duct when M _ 0, and a square-root zero is anticipated at the trailing edge of the duct

[11]. This latter condition is the well known Kutta condition. These edge conditions can

best be imposed by introducing the variable

L
Y3 = - _'cosK (3.1)

where 0 _<K _<n, and by defining

L
X3 = -_cosKo (3.2)

Now, the axial variation of the scattered pressure jump is written in terms of the set of

functions commonly utilized in thin airfoil theory [ 1 1]:

i +cosKq0j(_c)= sink j=0

[sin jn, j = I..... J - I

(3.3)
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The leading edge singularity at n=0 is contained explicitly in the first term of the

sequence. It is easily shown using eqn. (3.1) that it grows as the inverse square root of

distance from the edge. The remaining terms vanish at the leading edge of the duct and

all vanish as the square root of distance from the trailing edge in accordance with the

Kutta condition. As mentioned previously, use of eqn. (3.3) with a uniform discretization

in _: rather than Y3, has been shown to eliminate the need for additional adaptive

techniques in handling the square root singularity at the leading edge of the duct. Most

importantly, the Cauchy principal value integral of eqn. (2.54) can be obtained

analytically for the shape function expansion posed in eqn. (3.3). This analytical result

will be discussed in the next section.

The variation in the scattered pressure jump in the lateral direction on the wall

surfaces is expected to be similar to that seen in the incident pressure field. This variation

can be replicated by a sequence of functions that are sinusoidal in form. Therefore, the

shape functions modeling the lateral oscillations of the jump on the surfaces of the duct

are taken in the form

_k (Yz) = (3.4)
sin 2k-1)n k =l ..... K_-l

and

(v,) = 3.s)
sin 2k-2K,-1)n k =K,+I .... ,K_+K2-1

where KI and K2 are the finite number of functions to be used in the sequences. Both sets

of functions are symmetric about the midpoints of their respective lateral surfaces.
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It is noted that only a finite number of functions are used. Choosing the correct

number of functions from each shape function expansion set is not a straightforward task.

The number of functions that is sufficient for an accurate solution varies depending on the

choice of problem parameters such as Mach number, frequency and length of duct in

relation to the cross-sectional geometry. The process of determining the proper number

of functions is discussed later in conjunction with a numerical discussion of a sample

problem.

3.2 Principal Value Integral

The Cauchy principal value that appears in eqn. (2.57) can be evaluated

analytically for the shape functions defined in eqn. (2.33). By utilizing the relation

_=Y3-X3, and the transformation of eqn. (3.1), the integral becomes

l(OV,=2f32 c3 L!2 q_j(Y3) 2 3 _- q_j(K)
-_ (Y3 - X3) dY3 = -213 --_--'/[BX3o cos K -cosKo sin KdK (3.6)

The shape functions are substituted into eqn. (3.6) and the known integral

/_, cosnK dK= X sinn_:o
0 COSK -- COSKo Sill Ko

derived, for example, by Karamcheti [11 ], is used. For j=0 this yields

l(op_,= _2132 33X___xo I+cosK . _2132 c3 [O+x](cos -cOS o) = ax, =o

When j>0, eqn. (3.6) is

(_,) _ 8 _-- sinj_csinn _
Ij =-213 _--_/]', --"-_ _clK

aX_ o _cosK - cos Ko)

Utilizing the trigonometric identity

(3.7)

(3.8)

(3.9)
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sin j_: sin i<= (3.10)
2

and the relation established in eqn. (3.7), eqn. (3.9) is

l_p_)= 213______0(n cos jKo) = - 4n [32j sin jKo (3.11)
c3X3 L sin Ko

where eqn. (3.2) has been utilized to obtain the derivative with respect to X3. The results

expressed in eqns. (3.8) and (3.11) constitute, in analytical form, the entire effect of the

singularities in the integral equation (2.33).

3.3 Method of Collocation

Given a choice of the number of shape functions J, K,, and K2, there are a total of

J(K_+K2) unknown coefficients aj.k to be determined to complete the solution of eqn.

(2.33). Although there are numerous techniques available, the method of collocation [12]

is the technique utilized here to obtain the solution. This method involves the selection of

a grid of observer points on the surface at which the integral equation eqn. (2.33) is

satisfied exactly, thus producing a set of inhomogeneous linear algebraic equations for

the unknown coefficients. In the current work, however, the method is supplemented by

imposing the obvious physical condition that the pressure jumps on each wall should

equal one another at the comers where the walls meet. Thus, for example, it will be

required that _l(X3,b) = 7_2(Xa,a). If an unlimited number of functions were used in

each series expansion, this condition would presumably not be necessary. However, the

constraint imposed by the comer condition has been found to lead to an accurate

representation of the jump in scattered pressure using what appears to be as few shape

functions as possible.
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The grid of observerpointsusedhereconsistsof J locationsevenlydistributed

along the X 3 direction of the surface over the interval -L/2< X3<L/2. Because of the

symmetry present in the current problem, only one quarter of the perimeter of the duct

must be considered. Thus, Kl evenly distributed observer locations are chosen over the

interval 0 _ X2< b on the top surface, and K2-1 locations are distributed over 0 _<X_< a

on the side. The integral equation is satisfied at these J(K1+K2-1) points. The remaining

J equations necessary to complete the algebraic system are obtained by imposing the

corner condition at the J axial stations of the grid.

The first and last axial collocation locations are at a distance D* in from the

leading and trailing edges of the duct. The first grid point for each side is placed at the

center of each side (i.e., X2=0, X_=0) and the last is chosen at a distance of 10% of the

half length of the side in from the corner.

3.4 Numerical Integration

With the set of collocation points defined, the numerical evaluations of the

integrals of eqn. (2.34) is discussed. Four point Gauss-Legendre Quadrature is utilized to

complete all of the necessary integrations [12,13]. The integrands in eqn. (2.34) are all

non-singular and are well behaved and can be numerically integrated accurately given

that the proper discretization is utilized. The discretizations required along Y2 and YI are

independently determined based on the oscillatory behavior of the integrands. For the

surfaces X_ = +a, the oscillations of the integrand are governed by the shape functions

qJk(Y2) and the exponential function in terms of _ and 11 as
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,inE,2k ,,,,,
The Y2 oscillations are most rapid when g=0 and _=0. If the sine term in eqn. (3.12) is

rewritten in exponential form, the fastest oscillatory behavior with respect to Y2 is

• Yl+b "'k-'>"
Therefore, the wavelength of the fastest oscillation is

2r_

_.s = (2k - 1) (3.14)

2b

The total number of panels along the X_ = _+a surface is calculated using

2b
Ns = PX-- (3.15)

_-s

where Pa is the number panels chosen per wavelength. This parameter allows for the

optimization of the level of discretization utilized. Two panels per wavelength were

chosen. The same procedure determines the most rapid variation in the oscillatory

behavior of the integrand in eqn. (2.34) on the surfaces x2 = + b .

The axial discretization for the Y3 integration of all of the functions expressed in

eqn. (2.33) is examined now. The relationship between the variables Y3 and _: was

established in eqn. (3.1). Utilizing an even distribution of integration points in K leads to

a clustering of integration points in Y3 around the leading and trailing edges of the duct

eliminating the need for additional adaptive techniques. The length of the duct is

discretized evenly in K on the interval [0,n]. The variation in the axial direction is

described by
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sinjK ei'__x/_2+;2 (3.16)

Theoscillationsin Karemostrapidwhen11=0and_=0. If the sineterm in eqn.(3.16) is

written in exponentialform and_ is written in termsof K,thenthemostrapidvariation in

theaxialdirectionis approximatedby

eia_ eiJK _ ei(La+J)r

Now the wavelength of the fastest oscillation is determined by

2rc

_'_- L

_z-_ +j

(3.17)

(3.18)

The total number of panels required for the integration in the axial direction is calculated

using

7_
NK = P_.-- (3.19)

where again, Pz is the number of panels per wavelength. Four panels per wavelength are

used for all of the axial integrations. The integration with respect to Y3 is rediscretized for

every j and, likewise, the integration with respect to either YI or Y2 is rediscretized for

every k. The goal is to utilize as coarse a discretization as possible while maintaining a

uniform level of accuracy. The testing of the accuracy of the level of integration utilized

will be explored in the following section.

At this point, the numerical techniques necessary to obtain the solution to the

integral equation in eqn. (2.33) have been described. In the next section the solution of a

sample problem is investigated.
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3.5 Sample Problem Solution

The previous sections outlined the methodology necessary to determine the

acoustic field generated by a monopole source placed in a rectangular duct. The

methodology is applied here to a sample problem to test the integrity of the FORTRAN

code. The following table indicates the parameters chosen for the sample problem:

Parameter Value Parameter Value

M 0.0 a 0.25 m

L 0.5 m b 0.5 m

Frequency 750 Hz c 340.17 m/sec

Here, the frequency and duct dimensions are relatively small in order to minimize the

numerical effort required for the testing, and the duct and source are stationary in the

fixed medium. In this case, the incident field is symmetric in the axial direction about

X3=0 and therefore the jump in scattered pressure is also expected to be symmetric about

X3=0. Also, when M=0.0 there is no singularity in scattered pressure at the leading edge

of the duct. Thus, for this test case, the coefficients of the singular first terms and the

terms that are anti-symmetric about X3=0 0=2,4,6...) in the axial shape function

expansions (2.27) must be driven to zero in the solution of the algebraic system that

results from collocation.

The incident monopole pressure field is illustrated in Figures 2-4. Figure 2 shows

the axial variation in the complex incident pressure amplitude in both real and imaginary

parts on the duct surface Xl=a along its centerline X2=0. The complex incident pressure

amplitude for the lateral centerline X3=0 is shown in Figure 3 for the surface X_=a and is

shown in Figure 4 for the surface X2=b.
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The method of collocation is now used to solve for the coefficients aj.k in eqn.

(2.33). The grid of collocation locations is as discussed in section 3.3, and the axial

offset D* is taken to be 0.1L. Assuming that the collocation grid is adequate and that the

discretization discussed in section 3.4 yields accurate integrals, the number of functions

from the expansions (2.27) required to ensure a converged solution must be determined.

The oscillatory nature of the incident data function Piit)(X3) in eqn. (2.33) dictates the

number of functions required. However, this data function oscillates in a manner similar

to that of the incident pressure so that the number of functions required can be inferred

from the oscillations in the real and imaginary parts of the incident pressure illustrated in

Figures 2-4. It is seen in Figure 2 that about 1 ½ oscillations exist in the incident pressure

along the length of the duct for the sample problem. Experience indicates that it is

necessary to include all terms in the expansions (2.27) up to terms that oscillate at least

twice as fast as the incident data [4]. The axial shape functions (3.3) for j >_ 1 each have j

half-oscillations over the length of the duct. Therefore, a minimum of 6 of these sine

functions are expected to be required to reproduce the 1 ½ wavelengths (J=7). A total of

8 functions are actually chosen. Similar considerations determine K1 and K2 from the

incident pressure amplitude plotted along the lateral centerlines X3=0 on the surfaces

X_=a and X2=b. These lead to the choices K_=8 and K2=6. Upon solving eqn. (2.33), the

coefficients aj.k are obtained from which the scattered pressure jump is calculated utilizing

eqn. (2.27). The resulting pressure jump amplitude nl along X2=0 on the surface Xl=a is

shown in Figure 5. It is seen that, as expected, the jump amplitude is symmetric about

X3=0 and there is no singularity present at the leading edge of the duct. Thus the scheme
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has driven the singular terms and the anti-symmetric terms in the expansions (2.27) to

zero as required. The jump amplitude n, on the surface Xl=a laterally along X3=0 is

shown in Figure 6 and the jump amplitude rr2 on the surface X2=b along X3=0 is shown in

Figure 7. In Figures 5,6 and 7 the jump amplitudes are all smooth and, as expected,

display oscillatory behavior similar to that of the corresponding plot of the incident field.

To determine if the solution obtained is converged, the number of functions used

in the expansions (2.27) is varied. First, KI and K2 are held constant and J is varied as

shown in Figure 8. As J is increased there is little change in the scattered pressure jump.

A conclusion can be made here that a sufficient number of axial shape functions were

chosen. The same procedure is followed for the lateral functional expansions. Figures 9

and 10 show only minor changes when holding J=8 and varying the values of K_ and K2

for the X3=0 lateral plane on the surface X_=a and on the surface X2=b, respectively.

Therefore, it can be concluded that using J=8, K_=8 and K2=6 is sufficient to accurately

represent the solution for the jump amplitude in this case. Further tests involving

increasing all three parameters simultaneously were carried out, and all supported the

same conclusion.

It is also necessary to verify the validity of the discretization utilized. This can be

achieved by either increasing the number of Gauss points or by increasing the number of

panels per wavelength, P_. Here the number of Gauss points is doubled from 4 points to

8 points. Figures 11 and 12 show that no apparent differences exist between results with

the 4 point and 8 point Gauss-Legendre schemes along the lines X2=0 and X3=0 on the

surface X_=a. Many other such plots were examined, and all indicated that the level of
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discretizationutilized wassufficient to obtainaccurateresults. The remainder of the

results presented in this thesis are obtained utilizing the 4 point Gauss-Legendre scheme

with P_=2 for discretizing X_ and X 2 and P_=4 when discretizing in X3.

Finally, the choice of collocation points is considered. The collocation points are

evenly distributed along the length of the duct and along half of each lateral side. The

axial locations are distributed evenly between points at a fixed distance D* in from each

end of the duct. A different set of collocation points results simply by changing the value

of D*. Figure 13 shows that the solution with D*=0.005L exhibits no significant

variations from the solution with D*=0.01L along the axial centerline of the surface X_=a.

Other points with varying D* values showed little variation in the solution as well.

Similarly, the first lateral collocation points are on the center of each side and the last is

placed at a distance 10% of the half-length of the respective side. The set of collocation

points is modified by changing the position of the last point. The last collocation point

was placed at a distance of either 9% or 11% of the half-length of the lateral surfaces.

Figure 14 shows only slight changes in the solution when the set of collocation points is

altered. The distance corresponding to 10% of the half-length is deemed reasonable since

variations as small as these seen in Figure 14 have an insignificant effect on the radiated

field which is the topic of the next chapter.

It should also be mentioned here that if the dimensions a and b were taken to be

equal then, upon solving the system of equations, the jump amplitudes rc1 and n2 should

be identical. When the parameters selected for the sample problem were utilized in

conjunction with the condition that the dimension a was the same as dimension b, the
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jump amplitudes were found to be the same as expected. The same result was obtained

when the observer points were taken on one surface and thereby reducing the number of

unknowns.

3.6 Moving Duct Problem

While the problem discussed in the previous section was a useful test case, it is

also of interest to examine the solution for the jump amplitude when the duct is in motion

so that the jump is singular at the duct leading edge. Therefore, a case for which M=0.1

is presented here. The same numerical tests were also carried out for this case and led to

similar conclusions in regard to the accuracy of the level of discretization as well as the

choice of collocation locations. They will not be discussed further. For the moving case,

the same parameters as utilized in the previous problem were retained except that the duct

length was taken to be 2m. This is four times the length used in the sample problem and

therefore 4 times as many sine functions in the axial shape function expansion would be

expected to be required to obtain an accurate solution. However, for this flow case 25

functions from the expansion (2.27) were not sufficient. In fact, it was found that a total

of 52 axial functions were required before the solution was completely converged. It

appears that the need for so many functions arises because, in contrast to the circular duct

treated in ref. [6], the singularity at

perimeter of the duct. This differs

the leading edge varies in strength around the

significantly from the circular case where the

singularity was determined by a single point at the leading edge of the duct. This is one

reason why the rectangular duct problem is much more computationally intensive than
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the circular case treated in ref. [6]. A total of Kt=8 and K2=6 functions from the lateral

surface expansions were found to be sufficient and no apparent change in the solution

was observed when these values were varied. Figure 15 shows the scattered pressure

jump on the surface X_=a along X2=0 for a rectangular duct in the presence of flow.

Notice the square-root singularity at the leading edge of the duct and the square-root zero

at the trailing edge of the duct.

The radiated field for the above sample problems, as was well as for a higher

frequency case are presented in the next chapter.
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4. Radiated Field

The previous chapters outlined the analysis necessary to determine the acoustic

field generated by a monopole source placed at the center of a rectangular duct and some

of the numerical checks made on the analysis for inconsistencies. Once the jump

amplitudes x 1 and 7t2 have been determined, the scattered pressure at any observer

location is obtained by substituting these jump amplitudes into eqn. (2.22). The total

pressure at any point in the field is then obtained through the simple addition of the

incident and scattered pressure at an observer point in the field. The actual or physical

pressure for the incident, scattered or total pressure is the real part of its complex

counterpart. The corresponding root-mean squared (RMS) pressure is calculated in the

usual manner such that

where p" is the complex conjugate of p.

by

(4.1)

The sound pressure level (SPL) is determined

SPL= 20 log( Prmsl
k, Pref)

(4.2)

where pra--2 x 10 .5 Pa.

The incident, scattered and total pressures are illustrated in the following results

one cross-sectional plane at a time on the intersection of a sphere centered at the origin of

the body-fixed coordinate system and the plane of interest. These intersections are circles

along which are give:: polar plots or directivities of the radiated field about the plane of
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interest in terms of sound pressure levels in decibels (dB) from eqn. (4.2). A radius R of

5m was utilized for all of the directivities presented in this thesis. Figures 16(a)-(c)

depict the center planes of interest. The directivity angle is called 0 in each case, and it is

measured from the positive X_ axis (0°<0<180°). This angle is utilized to obtain

directivity plots for planes that intersect the source so that the radius of the arc for these

polar plots is 5m. For planes that do not intersect the source, such as that shown in

Figure 16(d), the radius of the polar arc is less than 5m. Since the incident field is

spherically symmetric when M=0, repeated use of the same spherical radius leads to an

incident field that is the same for each directivity plot for this case.

Chapter 3 included a detailed numerical validation process as well as the

presentation of the jump amplitudes for the sample problem. The radiated field plots for

the sample problem in the center planes X2=0, X3=0, and X_=0 are presented as solid lines

in Figures 17 (plane in Figure 16(a)), 18 (plane in Figure 16(b)) and 19 (plane in Figure

16(c)), respectively. The symmetric nature of these field plots is expected due to the

symmetry in the pressure jumps seen earlier for this case. For a duct length of 0.5m, the

solid lines in Figures 17 and 18 illustrate significant differences between the incident and

scattered pressures at 0=90 °. These give rise to a substantial enhancement in the total

field about 0=90 ° in the plane normal to the wide side (normal to surface X_=a) of the

duct. There is less apparent difference between the incident and scattered pressure in

Figure 19 resulting in only a slight enhancement about 0=90 ° in the plane normal to the

narrow side (normal to surface X2=b) of the duct. Figures 17 and 19 also indicate that the

monopole field is nearly unaffected by the duct in the direction of the central X3 axis.
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The enhancement seen in Figure 17 is unexpected since the results for the circular

ducted fan problem presented in refs. [2-4] usually depicted shielding rather than

enhancement about 0=90 ° . However, the propeller in free-space radiates primarily in the

lateral direction so that its radiation is significantly altered by the presence of the duct.

The monopole radiates in all directions including axially to the ends of the duct. This

difference in source type could explain the enhancement shown in Figures 17-19. In Ref.

[6], the radiated field from a monopole in a circular duct was discussed. The code

utilized to obtain those results was modified as discussed in Chapter 3 and an identical

source to that utilized in obtaining the results for Figures 17-19 was specified. Figure 20

illustrates the directivity pattern for the scattered and total pressure fields for the circular

duct at M=0. It depicts a small enhancement in the total pressure field about 0=90 ° for a

duct length of 0.5m, and indicates that lateral shielding is obtained only if the duct length

is increased to lm or more. Thus, monopole radiation from a circular duct can also give

an enhancement like that shown in Figure 17. Furthermore, it appears that the potential

for shielding by the rectangular duct does exist but that the duct length needs to be

increased.

The broken lines in Figures 17, 18 and 19 illustrate the effect on the scattered and

total pressure directivities of increasing the rectangular duct length to 1m and 2m. As the

duct length is increased, there is less apparent difference between the incident and

scattered fields which indicates that the potential exists for phase cancellation in the total

field. It is seen that some shielding is now obtained over the range 30°<0<150 `' .

Shielding is observed in the total pressure mainly in the center plane X_=0 (normal to
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narrowside)in Figure19andlittle shieldingis observedin thecenterplaneX2=0(normal

to wide side)in Figure 17. It alsoappearsthat shieldingexistsonly for a duct lengthof

2m or more. This is not surprisingsincethe centerplanenormal to the narrow side

exhibitsless enhancement in the 0.5m case. It might be expected intuitively that the wide

side of the duct should provide greater shielding from the source. However, this example

shows this not to be true in general. In fact, experience indicates that few general

statements can be made about the radiation patterns from ducts at low to moderate

frequencies. Figures 17 and 19 also show that the duct has little apparent effect in the

more nearly axial directions in the regions 150°<0<180 ° and 0o<0<30 °.

Figures 21 and 22 depict the radiated field plots for various axial and lateral cross-

sectional planes for the moving duct problem as discussed in Chapter 3. The axial center

planes of Figure 21 (planes in Figures 16(a) and (c)) and lateral center plane X3=0 of

Figure 22 (plane in Figure 16(b)) intersect the source. Some shielding is obtained in

these planes in the total pressure about 0=90 ° . The moving duct does not appear to have

as pronounced a channeling effect on the total radiated field as was the case for the

circular duct propfan model in refs. [2-4]. This is due to the difference in source type.

However, Figure 21 depicts two distinct bulges that display the impact of the singularity

of the pressure jump on the leading edge and satisfaction of the Kutta condition at the

trailing edge of the duct when M _ 0. These are no doubt counterparts of the channeling

effect seen for the propfan, but they only exist here in the plane normal to the narrow side

of the duct. The figure also shows that the level of shielding provided by the wide and

narrow sides of the duct does not differ as much in the presence of flow as compared to
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the differences witnessed in the M=0 case in Figures 17 and 19. Because of the

singularity at the leading edge of the moving duct, it is of interest to examine the

directivity in the plane that contains the leading edge (X3---L/2). This plane is shown in

Figure 16(d). The directivity in the plane containing the leading edge along with the

corresponding plane containing the trailing edge (X3=L/2) is shown in Figure 22. The

incident field shown in Figure 22 is that for the X3=0 plane since the incident fields for

the leading edge, trailing edge and lateral center planes differ only slightly at M=0.1. For

a duct moving in the negative X3-direction, there appears to be greater lateral shielding at

the trailing edge than at the leading edge plane, but in general there are not many

differences in the radiation patterns in these planes.

Finally, to include a case more nearly

experiments, the frequency is increased to 1922 Hz.

representative of practical inlet

At this frequency, the incident field

is highly oscillatory, and a significant number of shape functions is required from the

expansions (2.27) to model this field accurately (at least K_=20, K2=10, J=12 as a

minimum). Limitations on time and computational resources lead to the decision to

reduce the dimensions of the duct and thereby reduce the number of functions required to

accurately model the field. The dimensions a and b were reduced by a factor of 4

(a=0.0625m, b=0.125m, L=0.Sm) and only the stationary case M=0 was considered. This

allowed for accurate results to be obtained with K_=8, K2=6 and J=12. Figure 23 (planes

in Figures 16(a) and (c)) predicts significant shielding in the axial center plane normal to

the wide side of the duct as would be expected because the effect of the duct at high

frequencies is generally to beam sound in the axial directions. It is also of interest that,

despite the relatively high frequency, virtually no shielding is provided by the narrow
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sideof theduct,sothatthebeamingeffectoccurs here only in planes normal to the wide

side. Note that the beaming occurs even though the duct is of very short length. In the

lateral planes, there is significant shielding in the region from 120°<0<60 ° as shown in

Figure 24 (planes in Figures 16(b) and (d)). Thus the beaming seen in the plane X2=0 in

Figure 23 extends over a rather large angle range in the directions above the wide side of

the duct.
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5. Concluding Remarks

This thesis has detailed the analysis necessary to model the radiated field

generated by a monopole source placed at the center of a moving rectangular duet

utilizing a boundary integral technique. The total pressure in the acoustic field was

written in terms of incident and scattered pressure components such that the scattered

pressure represents modifications to the incident pressure due to the presence of the duct.

The scattered pressure is discontinuous across the duct walls. It satisfies a generalized

wave equation with a source term involving the unknown pressure jump across the duct

walls. Through the use of an integral representation for the scattered pressure, a singular

boundary integral equation governing the unknown jump in scattered pressure is derived.

The jump is represented by a double series of carefully chosen shape functions, and a

solution to the integral equation is obtained using the method of collocation. With the

jumps determined, their substitution back into the integral representation of the pressure

produces the radiated pressure at any observer location.

The goveming equations for the analysis presented in Chapter 2 were

programmed in a FORTRAN code which was run on a 500MHz DEC-Alpha workstation.

The singular analysis presented in Chapter 2 isolated the effect of the singularity in the

set of boundary integral equation thus eliminating problems with the implementation of

numerical schemes. Numerical verification of the FORTRAN code was presented in

Chapter 3. The chosen sets of shape functions were discussed and it was shown that

these functions allowed for a complete analytical evaluation of the singular part of the
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boundary integral equation. All the necessary numerical integrations were completed on

non-singular integrals.

Radiated field results for the some problems of interest were presented in Chapter

4. For a stationary duct at a frequency of 750Hz, lateral shielding was obtained for a duct

of sufficient length and was predominantly in the plane normal to the narrow side of the

duct. In fact, very little shielding was obtained in the plane normal to the wide side of the

duct, a result which is perhaps not expected intuitively. However, for a higher frequency

case of 1922Hz, significant shielding by the stationary duct was obtained in the plane

normal to the wide side of the duct. Interestingly enough, no shielding was provided by

the narrow side of the duct at this relatively high frequency.

For a moving duct, the radiated field for the monopole source can be compared to

that of the propeller source. The channeling effect witnessed with the moving ducted

propfan was not immediately apparent in the moving ducted monopole case except for

the appearance of two distinct bulges in the radiated field in the plane normal to the

narrow side of the duct. At a frequency of 750Hz, comparable shielding was provided by

all sides of the moving duct.

Because the analysis required to determine radiation from a rectangular duct is

fully two-dimensional, it requires significantly greater computational resources than for

the circular duct. Time and computer resources have allowed for only a few

representative examples to be studied in this thesis. They almost certainly do not fully

depict all of the interesting phenomena associated with radiation from a rectangular duct.

A true understanding of the radiated field would require a detailed parametric study

involving variations in duct dimensions, frequency and Mach number and it would be
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beneficial to complete such a study. Furthermore, it would be a logical further step to

include an acoustic liner in the rectangular duct. Unfortunately, computational

requirements for this problem would greatly exceed those for the rigid walled duct.
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